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A systematic numerical analysis is performed for the quasi-periodicity in the wake
where a circular cylinder is rotationally oscillated in time. The main emphasis is placed
on the identification of frequency selection subjected to the controlled perturbations
in the vicinity of lock-on. The frequency responses are scrutinized by measuring the
lift coefficient (CL). A direct numerical simulation is made to portray the unsteady
dynamics of wake flows at Re = 110. It is found that, after the shedding frequency
is bifurcated at the boundary of lock-on, one frequency follows the forcing frequency
and the other gradually converges to the natural shedding frequency. The asymptotic
convergence phenomena are observed by solving the Van der Pol equation and the
circle map. A new frequency selection formula is proposed. The quasi-periodic states
are interpreted in terms of the forcing frequency, shedding frequency and modulated
frequencies by employing the torus concept and the CL(t) diagram. In the quasi-
periodic state, the variation of magnitudes and relevant phase changes of CL with
forcing phase are examined.

1. Introduction
Much work has been reported on the shedding of vortices from a circular cylinder

which is placed in an oncoming crossflow (Sarpkaya 1979; Bearman 1984; Oertel
1990; Griffin & Hall 1991; Williamson 1996). The so-called Kármán vortices are shed
to the rear of the cylinder and they persist for some distance downstream in the wakes.
Many investigations have also been made of the near-wake flow structure subjected
to controlled forcings. These studies were performed to understand the interrelation
between the near-wake flow structure and the forcing on the body. In general,
relatively simple forcing methods on the cylinder have been employed, e.g. in-line
vibration, cross-stream vibration (Bishop & Hassan 1964; Koopman 1967; Stansby
1976; Ongoren & Rockwell 1988; Chyu & Rockwell 1996) and rotational oscillation
(Tokumaru & Dimotakis 1991). One prominent issue is the lock-on phenomenon
of the shedding frequency on the imposed frequency, i.e. the shedding frequency
synchronizes with the forcing frequency (Sung, Hwang & Hyun 1994a; Sung, Kim &
Hyun 1994b).

A literature survey reveals that most of the studies of near-wake flow structure
subjected to controlled perturbations have been concerned with the excitation of the
cylinder at a frequency in the vicinity of the inherent vortex formation frequency.
The ‘lock-on’ excitation produces a resonant peak of the amplitude of the flow state
quantity (Koopman 1967; Stansby 1976; Griffin & Hall 1991; Filler, Marston & Mih
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1991; Baek & Sung 1998). However, the outer boundaries of the region of ‘lock-on’
are characterized by the onset of quasi-periodic and chaotic states. Van Atta &
Gharib (1987) demonstrated the generation of a multiplicity of spectral components
experimentally. Very small cylinder vibrations produced a coupled wake–cylinder
response. The velocity spectra associated with these coupled motions had dominant
peaks at sum and difference combinations of multiples of the Strouhal frequency and
the forcing frequency. In the window of chaos, the velocity spectra were broadened by
switching between different competing coupling modes. Karniadakis & Triantafyllou
(1989) numerically simulated the response of the near wake and defined the regions of
quasi-periodic and chaotic behaviour. These wake responses were interpreted in terms
of multiple peaks of spectra and aperiodic phase-plane trajectories. Blevins (1985)
explored the influence of sound on vortex shedding. He found that the frequency of
vortex shedding can be shifted by sound applied either above or below the nominal
vortex shedding frequency. Lofty & Rockwell (1993) asserted in their experiment
that the response of the near wake can be classified into two general categories: a
modulated wake and a phase-locked wake. They analysed the wakes by using the
crucial topological features of the near wake and a phase clock concept.

As mentioned above, although only one frequency component is forced, the cylinder
wake generates multiple frequency components after a bifurcation of frequency. This
state can be called the ‘quasi-periodicity’, where the state has a period of infinity
and does not close itself in the phase-plane. The Fourier transform of the periodic
state consists of delta function spikes located at integer multiples of the fundamental
frequency. The quasi-periodicity state can be thought of as a mixture of periodic
motions of several different fundamental frequencies. The Fourier transform of the
quasi-periodic system consists of delta function spikes at all integer combinations
of fundamental frequencies. Since it contains only discrete components, it should
be distinguished from a chaotic system that has a broad continuous component
distribution (Ott 1993).

Based on the preceding observations of quasi-periodicity, this study presents a
systematic numerical analysis of the near-wake frequency selection and the asymptotic
states. The main emphasis of the present study is to identify the quasi-periodic
state around the lock-on region. Among the excitations in the vicinity of the outer
boundary of the lock-on region, a new frequency selection mechanism is observed in
a modulated wake. At the boundary between lock-on and non-lock-on, the shedding
frequency is bifurcated. After the bifurcation, one frequency follows the forcing
frequency (Sf) and the other returns to the natural shedding frequency (St∗0). Unlike
most previous investigations, the shedding frequency (St0) approximates the natural
shedding frequency. This is an asymptotic convergence of the shedding frequency
to the natural shedding frequency. These converging phenomena of St0 to St∗0 are
ascertained by solving the Van der Pol equation and the circle map (Nayfeh &
Mook 1979; Strogatz 1994). The power spectral density plots are used to analyse the
frequency response. A new frequency selection formula is proposed which depends
on the natural shedding and the forcing frequencies. It is found that this formula
provides a satisfactory fit to the present numerical simulation results.

A direct numerical simulation is made in the present study to portray the unsteady
dynamics of wake flows behind a circular cylinder. The Reynolds number based on the
diameter (D) is fixed at Re = 110, at which the vortex shedding flow is assumed to be
two-dimensional (Williamson 1996). Excitation is given by the rotational oscillation of
a circular cylinder (Baek & Sung 1998). The natural shedding frequency is St∗0 = 0.171
and the forcing frequency (fo) varies in the range 0.150 6 Sf = foD/U∞ 6 0.190. The
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maximum rotation velocity (Ωmax ) is 5.0% of the free-stream velocity. The primary
advantage of the numerical simulation is that wide ranges of the relevant flow
variables can be encompassed.

2. Numerical method
The non-dimensional governing equations for an unsteady incompressible flow are

∂ui

∂t
+

∂

∂xj
uiuj = − ∂p

∂xi
+

1

Re

∂

∂xj

∂

∂xj
ui, (2.1)

∂ui

∂xi
= 0, (2.2)

where xi are the Cartesian coordinates and ui velocity components in each direc-
tion. The free-stream velocity U∞ and the cylinder diameter D are used for non-
dimensionalization. The Reynolds number is defined as Re = U∞D/ν, where ν is the
kinematic viscosity.

To simulate wake flows behind a cylinder, it is useful to transform the governing
equations (2.1) and (2.2) into the generalized coordinates yi (Choi, Moin & Kim
1992). The velocity components ui are transformed into the volume fluxes across the
faces of the cell qi. Formulation of the problem in terms of the contravariant velocity
components, weighted with the Jacobian J in conjunction with the staggered variable
configuration, leads to discretized equations. The resulting pressure Poisson equation is
solved, where the discretized mass conservation is satisfied. The transformed governing
equations are rewritten as

∂qi
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where Ni is the convection term , Gi(p) is the pressure gradient term, Li1 and Li2 are the
diffusion terms without and with cross-derivatives and Di is the divergence operator,
respectively. The terms in equation (2.3) are rewritten in the following form:
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Li2(q) =
1

Re

1

J
γim

∂

∂yk
αkj

∂

∂yj
1

J
cml q

l , j 6= k, (2.8)

where
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j
kuk, c

j
k = ∂xj/∂y

k, γ
j
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−1,

αjk = J(cmj c
m
k )−1, J = (‖cmj cmk ‖)1/2, j, k, l, m = 1, 2.

A fully implicit, fractional-step method composed of four-step time advancement
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is used to solve the governing equations (Choi, Moin & Kim 1993). The fractional
step, or time-split method, is in general a method of approximation of the evolution
equations based on decomposition of the operators they contain. In application of
this method to the Navier–Stokes equations, one can interpret the role of pressure in
the momentum equations as a projection operator which projects an arbitrary vector
field into a divergence-free vector. In the Cartesian coordinates, these four steps are
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A second-order central difference scheme is used for the spatial derivatives and a
Crank–Nicolson method is employed in the time advancement. The substitution of
equations (2.10) and (2.12) into equation (2.9) indicates that the present scheme
is second-order accurate in time. The discretized nonlinear momentum equations
are solved by using a Newton-iterative method. Solving the Poisson equation for p
satisfies the continuity equation. In this computation, equations (2.9)–(2.12) are also
transformed from the Cartesian coordinate to the generalized coordinate.

A C-mesh is used for the present simulation. This type of mesh is ideally suited
for simulating wake flows since better streamwise resolution can be provided in the
wake region. The use of a C-mesh also simplifies the application of outflow boundary
conditions. The outflow boundaries are located at 20D and the transverse boundaries
are at 30D, which corresponds to (x, y) = (321× 101). Uniform free-stream velocity is
prescribed at the inflow and far-field boundaries, and a convective boundary condition
is employed at the outflow boundary in order to smoothly convert the disturbances
out of the computational domain (Pauley, Moin & Reynolds 1990). On the cylinder
wall, the periodic rotational oscillation conditions are used.

Since the cylinder is rotated sinusoidally in time to at a forcing rotational frequency
fo, the non-dimensional cylinder rotation velocity (Ω) is expressed by

Ω = Ωmax sin (2πSft), (2.13)

where the quantities are non-dimensionalized by adopting the following relations:
t = toU∞/D and Sf = foD/U∞. Here, the superscript o denotes the dimensional
counterpart. The maximum rotation velocity Ωmax is 5.0% of the free-stream velocity
(Ωmax = 0.05) and this magnitude can couple the forcing frequency with the natural
shedding frequency. Based on equation (2.13), the counter-clockwise rotation occurs
in the period of up to 0.5T from 0T . Then, the clockwise rotation occurs from
0.5T to T . Accordingly, the counter-clockwise rotation velocity is maximum at 0.25T
and the clockwise one is maximum at 0.75T . Here, T denotes the non-dimensional
forcing period, i.e. U∞/foD = 1/Sf . Details regarding the flow configuration, boundary
conditions, grid resolution and other numerical procedures are compiled in Baek &
Sung (1998).
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Figure 1. The natural frequency (St∗0) as a fuction of Reynolds number(Re) for the different
transverse boundary sizes.

3. Frequency selection in the wakes
The reliability and accuracy of the present simulation have been ascertained in

the previous paper (Baek & Sung 1998). The cylinder wake at Re = 110 has a
two-dimensional periodic laminar vortex shedding. The St∗0 − Re formulae in the
range 50 6 Re 6 160, pertinent to parallel vortex shedding, have been obtained by
Williamson (1989) and Fey, König & Eckelmann (1998). Several trial calculations
were repeated to monitor the sensitivity of the results to grid size, where the grid
points are crowded near the wall boundary. The grid convergence was checked (figure
1) and the outcome of these tests was found to be satisfactory for the present two-
dimensional computations (x, y) = (321 × 101). The value predicted by the present
simulation at Re = 110 is St∗0 = 0.171, which is in good agreement with that obtained
from the experimental formulae.

Time histories of the lift coefficient (CL) taken from the non-dimensional time
t = 1000 to t = 1500 are shown in figure 2. When the oscillation is not imposed, i.e.
no forcing, the wake exhibits natural shedding as shown in figure 2(a). The natural
shedding frequency is St∗0 = 0.171. Next, the frequency responses subjected to the
forced oscillations are investigated. An inspection of the time histories of CL as
shown in figure 2(b–j) reveals that lock-on occurs in the cases of (e) Sf = 0.165,
(f) Sf = 0.170 and (g) Sf = 0.175. The lock-on range is relatively narrow because the
magnitude of forcing is not large (Ωmax = 0.05). In these cases, the near-wake vortex
pattern is highly repeatable over the cycles.

Outside the relatively narrow band of lock-on, the flow structure is not phase-
locked with respect to the forced oscillation. A modulated wake pattern is observed
over ranges of excitation frequency above and below the lock-on range. In the cases
below the lock-on range (Sf = 0.150, 0.155 and 0.160) and above the lock-on range
(Sf = 0.180, 0.185 and 0.190), additional frequency components exist. The modulated
behaviour below the lock-on range is analogous to that occurring at excitations
above the phase locking. In general, it is shown that the modulated long period
decreases as the forcing frequency moves away from the lock-on boundary frequency.
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Figure 3. Power spectra at several forcings (Ωmax = 0.05): (a) below the lock-on region,
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An examination of the magnitudes of CL in figure 2 indicates that the peak to peak
values of CL at lock-on are larger than those at no forcing. However, the peak to
peak values at non-lock-on vary in time.

In order to analyse the modulated frequency selection in detail, CL is Fourier
transformed and the results are plotted in figure 3. The data from t = 500 to 1500
are employed for the transform so that the transform resolution is 0.001. As shown
in figure 3(b), when no forcing is imposed, the natural shedding frequency is clearly
detected at St∗0 = 0.171. In the narrow band of excitation frequencies Sf = 0.165,
0.170 and 0.175, the flow is synchronized, which is displayed in figure 3(b). For
excitation at frequencies below the lock-on, i.e. Sf = 0.150, 0.155 and 0.160, the
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frequency selections are exhibited in figure 3(a). A closer inspection of the shedding
frequencies (St0) subjected to several forcing frequencies reveals that they are not
concentrated at the natural shedding frequency (St∗0 = 0.171), but gradually converge
to St∗0. The forced flow frequency bifurcates into two frequencies: one follows the
forcing frequency (Sf) and the other (St0) asymptotically moves to St∗0. It is important
to find these converging phenomena since they are closely related to the afore-stated
quasi-periodicity in the controlled cylinder wakes. For excitation at frequencies above
the lock-on, i.e. Sf = 0.180, 0.185 and 0.190, the same behaviour is observed, as
exhibited in figure 3(c). Other modulated frequencies due to the nonlinear coupling
effect are also detected in figure 3. The additional frequencies follow the rule that the
interval between the modulated frequencies is equivalent to the interval between St0
and Sf .

A magnitude comparison for the respective frequencies shows St0 > Sf > Smj,k ,
where Smj,k denotes the modulated frequencies. This means that St0 is dominant
compared to Sf and other subsequent modulated frequencies Smj,k . The following
formula can be derived for generating Smj,k from Sf and St0 by examining figure 3:
Smj,k = jSt0 + kSf , where j, k are integers. For example, the first modulated frequency
Sm2,−1

is Sm2,−1
= 2St0− Sf for j = 2, k = −1 and the second Sm3,−2

is Sm3,−2
= 3St0− 2Sf

for j = 3, k = −2, etc. For convenience, the first modulated frequency is abbreviated
as Sm2,−1

= Sm hereafter since it will be referred to frequently in the following sections.
It is seen in figure 3 that the modulated frequencies (Smj,k ) are located on the opposite
side of Sf compared to St0. The magnitudes of Smj,k decrease as Sf moves away from
the lock-on range. On the other hand, as Sf approaches the lock-on boundary, the
magnitudes of Smj,k increase and the modulated frequency intervals decrease. When
Sf is very close to the lock-on boundary, the interval between Sf and St0 becomes
very narrow and their magnitudes are almost equivalent. This forms a distributed
spectral band at the lock-on boundary. As Sf approaches the boundary of lock-
on, the responses are characterized by a richness in frequency content and relatively
broadened spectral densities. This may be compared with the phenomena of low-order
chaos discussed in Karniadakis & Triantafyllou (1989).

It is important to look into the effect of Reynolds number (Re). Two additional
simulations have been made for Re = 80 and 140 (figure 4). At Re = 80, excitation
at frequencies below St∗0 has been applied. The case of Sf = 0.145 shows the lock-on
behaviour. In the quasi-periodic states of Sf = 0.138 and Sf = 0.140, St0 increases
and converges to St∗0. At Re = 140, excitation at frequencies above St∗0 has been
applied. The case of Sf = 0.188 shows the lock-on behaviour. In the quasi-periodic
states of Sf = 0.190 and Sf = 0.195, St0 decreases and converges to St∗0. The spectral
behaviours of Re = 80 and 140 are found to be consistent with those of the original
Reynolds number Re = 110.

The afore-stated frequency bifurcation and the corresponding convergence of St0
to St∗0 can be observed by solving the Van der Pol equation. The Van der Pol equation
is widely used to analyse nonlinear oscillation models, as it exhibits the desired
characteristics of limit-cycle oscillation and frequency lock-on. Hartlen & Currie
(1970) proposed a Van der Pol-type soft nonlinear oscillator for the lift force, which
is coupled to the body motion by a linear dependence on the cylinder velocity. Iwan
& Blevins (1974) devised a model in which the vortex-induced oscillation satisfies a
Van der Pol-type equation.

The Van der Pol equation of free, self-sustained oscillations is expressed as

ü+ ω∗0
2
u = ε(u̇− 1/3u̇3) + E(t), (3.1)
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Figure 4. Power spectra at (a) Re = 80 and (b) 140.

where E(t) is a forcing term and ε(u̇−1/3u̇3) is a damping term. Due to the nonlinear
damping term, the oscillator is self-excited and self-limited. ω∗0 is the natural angular
velocity. When E(t) = 0, the system oscillates with the limit-cycle frequency (Nayfeh
& Mook 1979). If the magnitude of the forcing term (εk) is small and the difference
(εσ = ωf − ω∗0) between the forcing angular velocity (ωf) and the natural angular
velocity (ω∗0) is small, E(t) can be expressed as

E(t) = εk cosωft. (3.2)

For lock-on, the response should be expressed as u = a cos (ωft − γ), where a is the
magnitude of response and γ is the phase difference. In order to obtain a lock-on
solution, the frequency response equation satisfies the following relation (Nayfeh &
Mook 1979):

ρ(1− ρ)2 + 4σ2ρ = 1
4
k2, (3.3)

where ρ = 1
4
ω∗0

2a2. Depending on the values of ρ and σ, the response can be
categorized into ‘lock-on’ and ‘non-lock-on’. In the case of ρ > 1/2 and (1 − 4ρ +
3ρ2)/4 + σ2 > 0, the system is stable, i.e. lock-on occurs. Otherwise, the response
is unstable and aperiodic. For example, when ε = 0.1, ω∗0 = 1.0 and k2 = 2.0, if
|ωf −ω∗0 | < 0.0426, the system is stable. However, if |ωf −ω∗0 | > 0.0426, the system is
unstable (Nayfeh & Mook 1979).

The foregoing results can be reconfirmed by solving the Van der Pol equation with
the fourth-order Runge–Kutta method. The Fourier transforms are shown in figure 5.
The periodic lock-on state occurs in the case of ωf = 0.96 and ωf = 1.04, as shown in
figure 5(b). The no-forcing case at ω∗0 = 1.00 is also shown in figure 5(b). Outside the
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Figure 5. Power spectra on the Van der Pol equation: (a) below the lock-on region,
(b) lock-on and (c) above the lock-on region.

lock-on range, i.e. in the cases below (ωf = 0.93, 0.94 and 0.95) and above (ωf = 1.05,
1.06 and 1.07), the responses are very similar to those of the afore-stated observations
in figure 3. In particular, the converging phenomena to ω∗0 = 1.0 are clearly captured
in figures 5(a) and 5(c). The modulated frequencies due to nonlinear coupling on the
opposite side are also observed as seen in figure 3.

Another model, the circle map, is applied to predict certain features of the wake
subjected to controlled forcings (Olinger & Sreenivasan 1988; Strogatz 1994; Olinger
1998). The circle map is a universal model describing a system with two coupled
oscillations. While the temporal variations are dealt with in the Van der Pol model,
the phase is directly employed in the circle map.
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If the angular velocity of forcing is ωf(= Θ ′ = dΘ/dt) and the phase of the
response is φ, the circle map is written as

ω0 = ω∗0 + A sin (Θ − φ), (3.4)

where ω0 is the angular velocity of the system (ω0 = dφ/dt), ω∗0 is the natural
angular velocity and A is a resetting strength (A > 0) which measures the ability
of the system to modify its instantaneous angular velocity. When ωf > ω∗0 , Θ is
ahead of φ and this yields sin (Θ − φ) > 0 and the angular velocity of the system
(ω0) increases and converges to ωf . On the other hand, if ωf < ω∗0 , sin (Θ − φ) < 0
and the opposite is true. Accordingly, lock-on occurs in the range of entrainment
(ω∗0 − A 6 ωf 6 ω∗0 + A). The phase difference is Θ−φ = π/2 at ω0 = ωf = ω∗0 +A
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and it is shifted to Θ−φ = −π/2 at ω0 = ωf = ω∗0 − A, which results in a response
phase shift of π. As an example, equation (3.4) is solved in the range 0.80 6 ωf 6 1.20
for ω∗0 = 1.00 and A = 0.05 and the Fourier transform results are displayed in
figure 6. The lock-on takes place at ωf = 0.96, 1.00 and 1.04. Outside the lock-on
range, the response behaviours are consistent with those in the Van der Pol equation
model. These confirm the present observations, i.e. the frequency selection and the
asymptotic convergence of the dominant shedding frequency (St0) to the natural
shedding frequency (St∗0).

Based on the preceding results, a model equation is proposed to describe the
frequency selection subjected to controlled forcings. The asymptotic convergence of
St0 to Sf can be modelled as

dSt0/dt = −kf(St0 − Sf), (3.5)

where kf is a model function (kf > 0). When St0 > Sf , dSt0/dt becomes negative and
St0 decreases. On the other hand, when St0 < Sf , dSt0/dt becomes positive and St0
increases. Regardless of the initial value of St0, St0 converges to Sf . Similarly, the
convergence of St0 to St∗0 can be written as

dSt0/dt = −k∗0(St0 − St∗0), (3.6)

where k∗0 is also a model function (k∗0 > 0). Combining these two equations results in

dSt0/dt = −kf(St0 − Sf)− k∗0(St0 − St∗0). (3.7)

In equation (3.7), kf and k∗0 are weighting factors that depend on Sf , St
∗
0 and St0:

kf = C1 exp (−C3|Sf − St0|) exp (−C4|Sf − St∗0|), (3.8)

k∗0 = C2(1− exp (−C5|Sf − St0|)). (3.9)

In equation (3.8), kf represents the degree of convergence of St0 to Sf , i.e. the extent of
lock-on. The first term, exp (−C3|St0− Sf |), indicates that St0 does not converge to Sf
if |Sf − St0| is very large. The second term, exp (−C4|Sf − St∗0|), indicates that lock-on
takes place in the vicinity of St∗0. The model function k∗0 in equation (3.9) represents the
degree of convergence of St0 to St∗0, where the term 1− exp (−C5|Sf − St0|) weakens
the tendency of St0 towards St∗0 as St0 approaches Sf . In equation (3.7), if St0 is
equal to Sf , dSt0/dt = 0, then Sf is a solution. In the vicinity of St∗0, Sf is a stable
solution of equation (3.7). However, as |Sf − St∗0| exceeds a certain value, Sf becomes
an unstable solution. An additional stable solution is obtained, i.e. St0 ≈ St∗0. Note
that the exponential function in equations (3.8) and (3.9) is employed to represent a
decaying function.

Figure 7 shows a model prediction of the frequency selection obtained by solving
equation (3.7). In figure 7, the solid line represents stable solutions (St0) and the
dotted line indicates unstable ones. The points designated • are obtained by solving
the Navier–Stokes equations in the forced wakes (figure 3). The constants in equation
(3.8) and (3.9) are: C1 = 0.039, C2 = 1.0, C3 = 110, C4 = 5.0 and C5 = 5.4.
A comparison of the frequency selections in figure 7 discloses that the shedding
frequency (St0) changes continuously to St∗0 in the non-lock-on region after the
frequency bifurcation at the lock-on boundary. The agreement between the model
prediction and the numerically simulated wake results is satisfactory.
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Figure 7. Frequency selection diagram. See text for details.

4. Analysis of quasi-periodicity
As discussed in § 3, the cylinder wakes studied here show a quasi-periodic state

containing two fundamental frequencies St0 and Sf . In such a state, the lift coefficient
(CL) can be represented as a double Fourier series of the form (Ott 1996)

CL(t) =

∞∑
j=−∞

∞∑
k=−∞

aj,k cos [2π(jSt0 + kSf)t− φj,k], (4.1)

where aj,k is the amplitude and φj,k is the phase of frequency jSt0 + kSf . For
all jSt0 + kSf < 0, the amplitudes aj,k are set to zero, i.e. aj,k = 0. The time-
averaged value of CL(t), i.e. a0,0 cos (φ0,0) is zero for j = k = 0. For j = 0 and
k = 1, the component of Sf is a0,1 cos (2πSft − φ0,1). Since the forcing frequency
and its superharmonics coexist in the lock-on state, equation (4.1) can be written as
CL(t) =

∑∞
k=0 a0,k cos (2πkSft− φ0,k). To show the behaviour of CL(t) effectively with

the forcing phase information (θ = 2πSft), a diagram of CL(t) is employed by dividing
CL(t) into two components, i.e.

a(t) = CL(t) cos θ, (4.2)

b(t) = CL(t) sin θ. (4.3)

This indicates that the distance from the origin (a = 0, b = 0) to each point is CL(t)
and the angle with the a-axis is θ, i.e. b(t)/a(t) = tan θ. From such a diagram, the
desired information for CL(θ) can be acquired directly at each forcing phase θ.

For lock-on, i.e. Sf = 0.165, 0.170 and 0.175, three circle diagrams are shown in
figure 8. Since a0,0 = 0 and a0,1 � a0,2, a0,3, . . . , CL(t) can be written as

CL(t) = CLmax
cos (θ − φf). (4.4)

To obtain the above relation, it is assumed that φf ≈ φ0,1, CLmax
≈ a0,1 and therefore

CL(θ + π) = −CL(θ). CL has a positive maximum (+)CLmax
at θ = φf and a negative

maximum (−)CLmax
at θ = φf + π. Accordingly, these two maximum points of CL(t)

collapse in figure 8. The substitution of equation (4.4) into equations (4.2) and (4.3)
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Figure 8. Diagrams of CL(t) at lock-on: Sf = 0.165, Sf = 0.170 and Sf = 0.175.

yields

a(t) = CLmax
cos (θ − φf) cos θ = 1/2CLmax

cos (2θ − φf) + 1/2CLmax
cosφf, (4.5)

b(t) = CLmax
cos (θ − φf) sin θ = 1/2CLmax

sin (2θ − φf) + 1/2CLmax
sinφf. (4.6)

Based on these relations, a circle equation is derived as

(a(t)− 1
2
CLmax

cosφf)
2

+ (b(t)− 1
2
CLmax

sinφf)
2

= ( 1
2
CLmax

)2. (4.7)

In the above circle equation, the distance from the origin (a = 0, b = 0) to the centre
of circle ( 1

2
CLmax

cosφf,
1
2
CLmax

sinφf) is 1
2
CLmax

. The angle with the a-axis is φf , which
is designated by black dots in figure 8. It should be noted that one forcing cycle is
achieved every two revolutions.

A closer comparison of three circles for Sf = 0.165, 0.170 and 0.175 reveals that
small changes of Sf produce large changes of φf . Once one vortex is created, a low-
pressure region emerges to balance its centrifugal force. This means that the change
of φf induces a switch in the phase of the initially formed vortex. For Sf = 0.165, the
vortex is formed on the upper cylinder side in the clockwise rotation. However, for
Sf = 0.175, it is formed in the counter-clockwise rotation. The phase change between
the shedding vortex and the cylinder rotation velocity is the order of π in the lock-on
region (Ongoren & Rockwell 1988; Filler et al. 1991; Baek & Sung 1998).

Before looking into the CL(t) variations outside the lock-on state, it is meaningful
to see the flow patterns with respect to the rotational oscillation in the non-lock-on
state. To observe the vortex formation modes, instantaneous streamlines from the
simulations of the consecutive rotational oscillations are displayed in figures 9 and
10 for Sf = 0.155 and Sf = 0.190, respectively. The streamline snapshots are shown
taken from the instant when the counter-clockwise rotation starts, i.e. the forcing
phase θ is zero (θ = 2nπ). In each snapshot, the succession of streamlines corresponds
to successive cycles of the rotational oscillation. The history of CL(t) is also plotted
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Figure 9. Instantaneous streamline patterns of the consecutive rotational oscillations at Sf = 0.155.
The points in the CL(t) diagram correspond to the respective instants in the streamline pictures
(θ = 2πSft = 2nπ).
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Figure 10. As figure 9 but at Sf = 0.190.
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on the upper-left plot of the figure. The designated points in CL(t) correspond to the
respective instants in the streamline pictures.

In the case of Sf = 0.155 (figure 9) where the forcing frequency is below the
lower limit of lock-on, the shedding frequency (St0 ≈ 0.169) is slightly lower than
the natural shedding frequency (St∗0 = 0.171). Since St0 is higher than the forcing
frequency (Sf = 0.155), the shedding period is shorter than the forcing period. This
leads to a slight phase delay, which is also exhibited in the CL(t) history. When the flow
state is examined at each forcing cycle, one cycle of the vortex shedding is completed
and the next cycle has partially elapsed. During the 11 forcing periods, approximately
12 vortex sheddings occur from each side (St0/Sf ≈ 0.169/0.155 ≈ 12/11). In figure
9, the streamline pattern at 12T after the 11th forcing looks similar to the original
pattern at 1T ; however, it is not exactly the same. Since the ratio St0/Sf is not
rational, the flow state is quasi-periodic and the same state is never exactly recovered.

The case of Sf = 0.190, which is above the upper limit of lock-on, is shown in figure
10. The instantaneous streamline patterns are analogous to those presented in figure
9. The shedding frequency (St0 ≈ 0.172), which is slightly higher than the natural
shedding frequency (St∗0 = 0.171), is lower than the forcing frequency (Sf = 0.190).
Since one cycle of the vortex shedding is not completed during one forcing cycle, some
additional time is required. It is observed in the CL(t) history that the phase is slightly
preceded per cycle and these accumulate. After the 11 forcing periods, the streamline
pattern at 12T in figure 10 is similar to the streamline pattern at 1T . However, these
are not exactly the same. During the 11 forcing periods, approximately 10 vortex
sheddings occur (St0/Sf ≈ 0.172/0.190 ≈ 10/11).

The afore-stated instantaneous streamline patterns are analogous to the experimen-
tal aperiodic responses of Lofty & Rockwell (1993). For example, figure 9 corresponds
to figure 2(a) in Lofty & Rockwell (1993). The forcing condition is similar, e.g. the
value of Sf/St

∗
0 = 0.155/0.171 ≈ 0.906 is similar to that of fe/f

∗
0 = 0.87 in Lofty

& Rockwell (1993). The upper vortex moves away from the cylinder with increasing
number of forcing cycles. For excitation at frequencies above the upper limit of
lock-on, figure 10 (Sf/St

∗
0 = 0.190/0.171 ≈ 1.11) is similar to figure 2(b) in Lofty &

Rockwell (1993) (fe/f
∗
0 = 1.25). The upper vortex moves towards the cylinder with

each successive forcing cycle.
The CL(t) diagrams for non-lock-on are displayed in figure 11, where the axes a(t)

and b(t) are defined in equations (4.2) and (4.3). The solid line represents the averaged
value of CL(t) at each forcing phase (θ = 2πSft), which is denoted by CLave

(θ). The
dash-dot line represents the positive and negative maximum values of CL(t) at θ, i.e.
CLmax+

(θ) and CLmax−(θ). The dotted line represents the differences between CLave
(θ) and

CLmax±(θ), which are defined as

CLdiff +
(θ) = CLmax+

(θ)− CLave
(θ), (4.8)

CLdiff−(θ) = CLmax−(θ)− CLave
(θ). (4.9)

With these definitions, the behaviour of CL(t) versus θ can be analysed with respect
to Sf . For example, in the case of Sf = 0.160, the following can be obtained from
figure 11(c): CLave

(0.50π) = (−)0.103 at θ = 0.50π and CLave
(1.50π) = (+)0.103 at

θ = 1.50π(= −0.50π), i.e. CLave
(θ + π) = −CLave

(θ). The marked point on the solid
line indicates that the maximum CLave

(θ) is at θ = 1.80π(= −0.20π). Recall that
the rotational oscillation is defined as Ω = Ωmax sin (2πSft). This suggests that the
positive maximum of CLave

(θ) is obtained when the clockwise velocity is reduced. It
is known from the definition of CLmax±(θ) that all instantaneous points of a(t) and
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Figure 11. Diagrams of CLave (θ), CLmax± (θ) and CLdiff± (θ) at non-lock-on: CLave (solid),
CLmax± (dash-dot) and CLdiff± (dashed).

b(t) are within the dash-dot line. Since the closed diagram of CLmax+
(θ) is the same

as that of CLmax−(θ), CLmax+
(θ) is equal to −CLmax−(θ + π), e.g. CLmax+

(0.50π) = (+)0.411
and CLmax−(0.50π) = (−)0.291. In the opposite phase, CLmax+

(1.50π) = (+)0.291 and
CLmax−(1.50π) = (−)0.411. From the definitions of equations (4.8) and (4.9), CLdiff +

(θ)
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is equal to −CLdiff−(θ + π). It is shown in figure 11 that they collapse exactly. For
example, when Sf = 0.160, CLdiff +

(0.50π) = (+)0.514 and CLdiff−(0.50π) = (−)0.188. In
the opposite phase, CLdiff +

(1.50π) = (+)0.188 and CLdiff−(1.50π) = (−)0.514. However,
it should be noted that CLave

(θ) is not the same as the mean value of CLmax+
(θ) and

CLmax−(θ).
An examination of figure 11 indicates that the size of CLave

(θ) is reduced as Sf
moves away from the lock-on boundary. This means that the magnitude of the Sf
component decreases as |Sf − St∗0| increases. Another finding concerning CLave

(θ) is
that the maximum phases of CLave

(θ) at lower forcing frequencies are located on the
opposite side to those at higher forcing frequencies. The phase differences in the
lock-on region are preserved in the non-lock-on region.

In contrast to the changes of CLave
(θ) just noted, the size change of CLmax+

(θ) is
not substantial. This may be attributed to the fact that the instantaneous maximum
values of CL(t) do not vary significantly in the forcing cases. It is seen in figure 11
that the phase of the maximum CLmax±(θ) is not the same as that of CLave

(θ). The
phase difference between them is small for Sf = 0.150 and Sf = 0.190, while it is
significant for Sf = 0.160 and Sf = 0.180. These differences are dependent on the
distribution of CLdiff±(θ). If the diagram of CLdiff±(θ) has a circle shape, CLdiff±(θ) is
constant and independent of θ. When Sf is far away from the lock-on boundary, it
is seen that the shape of CLdiff±(θ) is closer to a circle shape and the corresponding
phase difference decreases. These phenomena can be explained by the presence of
modulated frequencies, which will be seen later.

Specification of one phase can be regarded geometrically as specifying a point
on a circle. Specification of two phases can be regarded geometrically as specifying
a point on a two-dimensional toroidal surface. Provided that the two phases are
incommensurate, the orbit on the torus never closes on itself. As time goes to
infinity, the orbit will eventually come close to every point on the toroidal surface
(Ott 1996). By utilizing the torus concept, the afore-stated quasi-periodicity can be
described effectively. Since the curved surface of a torus makes it hard to draw
phase trajectories, an equivalent representation is employed: a square with periodic
boundary condition. Then, if a trajectory runs off a boundary, it reappears on the
opposite boundary. The forcing phase is defined as θ = 2πSft+ θ0 and the shedding
phase as ϕ = 2πSt0t + ϕ0. Trajectories with the coordinates θ and ϕ are shown in
figure 12(a, b), where the corresponding trajectories are straight lines with constant
slope St0/Sf = p/q. Two examples at θ0 = 0 and ϕ0 = 0 are shown in figure 12: (a)
St0/Sf = p/q = 4/3 and (b) St0/Sf = p/q = 17/15.

There are two qualitatively different cases, depending on whether the slope p/q is
a rational or an irrational number. If the slope is rational, all trajectories are closed,
because θ completes q revolutions in the same time that ϕ completes p revolutions.
The initial positions are determined by θ0 and ϕ0. If the slope is irrational, then
the flow is said to be quasi-periodic. Every trajectory is continued endlessly on the
square, never intersecting itself and yet never quite closing. Each trajectory is dense
on the square: in other words, each trajectory comes arbitrarily close to any given
point on the square. This is not to say that the trajectory passes through each point;
it just comes arbitrarily close. Therefore, the initial values θ0 and ϕ0 are meaningless.
By adding the modulation phase, it can be extended to a three-dimensional regular
hexahedron. The modulation phase ϕm is defined as ϕm = 2πSmt + ϕm0

, where Sm is
the first modulated frequency Sm = Sm2,−1

= 2St0− Sf . After some substitution ϕm can
be rewritten as ϕm = 2ϕ− θ + ϕm0

, where ϕm0
is the modulation phase at the instant

t = 0. The instant t = 0 is set when θ = 2n1π and ϕ = 2n2π, where n1 and n2 are



Quasi-periodicity in the wake of an oscillating cylinder 295

(a)
2p

p

0 p 2p

h

u

(b)
2p

p

0 p 2p

h

u

02p

0
2p

2p

0

02p

2p
0

2p

um

u
h

(c)

Figure 12. Two-frequency quasi-periodic trajectories on a square and a hexahedron:
(a) St0/Sf = 4/3, (b) St0/Sf = 17/15 and (c) St0/Sf is irrational.

integers. A three-dimensional trajectory (θ, ϕ, ϕm) is plotted in figure 12(c), where the
initial phase is ϕm0

= 0. As shown, it constitutes several planes with respect to the
lines of infinite length. The positions are determined by ϕm0

.
The lift coefficient CL(t) in equation (4.1) can be written in terms of three dominant

frequencies

CL(t) ≈ Af cos (2πSft− φf) + A0 cos (2πSt0t− φ0) + Am cos (2πSmt+ ϕm0
− φm),

(4.10)

where Af , A0 and Am denote the magnitudes of three frequency components Sf , St0
and Sm. Taking a phase average at every θ(= 2πSft) results in the second and third
terms in equation (4.10) going to zero. This is due to the fact that St0/Sf is irrational.
Accordingly, the phase-averaged value of CL(t) is CLave

(θ) = Af cos (θ − φf). CLave
(θ)

is represented by the solid line in figure 13. Note that this is the same as the solid
line in figure 11.

By using the modulation relation Sm = 2St0 − Sf , equation (4.10) can be rewritten
as

CL(θ, ϕ) = Af cos (θ − φf) + A0 cos (ϕ− φ0) + Am cos (2ϕ− θ + ϕm0
− φm). (4.11)

If the modulated frequency term is not considered (Am = 0), CL(θ, ϕ) has the maximum
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Figure 13. Frequency component diagrams of CL(θ) at non-lock-on:
Sf (solid), St0 (dash-dot) and Sm (dashed).

value Af +A0 when the point (θ, ϕ) comes arbitrarily close to the point (φf, φ0). This
gives CLmax+

(θ) = Af cos (θ − φf) + A0 and CLdiff +
(θ) = A0. The maximum phase of

CLmax+
(θ) is then equal to that of CLave

(θ), i.e. φf . However, due to the presence of
the modulated frequency term (Sm) in reality, the above relation is not valid. Since
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A0 > Af > Am, when CL(θ, ϕ) has maximum, the shedding phase ϕ is approximated
as ϕ ≈ φ0 and equation (4.11) reduces to

CLmax+
(θ) = Af cos (θ − φf) + A0 + Am cos (2φ0 − θ + ϕm0

− φm). (4.12)

Note that the modulated frequency term is a function of θ. If ϕm0
= φf + φm − 2φ0,

the phase of the maximum CLmax+
(θ) is φf , which is the same as that of CLave

(θ). The
value of CLmax+

(φf) is then CLmax+
(φf) = Af + A0 + Am upon substitution of φf into

equation (4.12). For arbitrary ϕm0
, it shows that the maximum value of CLmax+

(θ) is

A0 + [A2
f + A2

m + 2AfAm cos (ϕm0
+ 2φ0 − φf − φm)]1/2. The phase of the maximum

CLmax+
(θ) is not φf only, but it is also dependent on Af , Am, ϕm0

, and φm as well.
Figure 13 shows the frequency component diagrams of CLmax+

(θ). The solid, dash-
dot and dashed lines represent the first (forcing), the second (shedding) and the third
(modulated) terms of CLmax+

(θ) in equation (4.12), respectively. The maximum values
are marked on the diagrams. Note that the solid line is the same as that of CLave

(θ)
in figure 11. Corresponding to equation (4.12), CLdiff +

(θ) in equation (4.8) can be
rearranged as

CLdiff +
(θ) = A0 + Am cos (2φ0 − θ + ϕm0

− φm) = C̄Ldiff +
+ C ′Ldiff +

(θ), (4.13)

where C̄Ldiff +
is the averaged value of CLdiff +

(θ) and is equivalent to A0 in equation
(4.12). C ′Ldiff +

(θ) corresponds to the third term in equation (4.12), i.e. C ′Ldiff +
(θ) =

Am cos (2φ0 − θ + ϕm0
− φm). This yields CLmax+

(θ) = CLave
(θ) + C̄Ldiff +

+ C ′Ldiff +
(θ).

As shown in figure 13, the size of the solid circles decreases as Sf moves away
from the lock-on boundary. This suggests that the direct response of Sf to CL
weakens outside the lock-on range. The changes of the dash-dot circles are small,
which means that the strength of a shedding vortex is not significantly affected by
the forcing frequency (Sf). However, it is known that the frequency selection of St0
depends on Sf . A closer inspection of the dotted lines in figure 13 indicates that the
magnitude of Sm(= Sm2,−1

= 2St0−Sf) increases as Sf is closer to the lock-on boundary.
The magnitudes of C ′Ldiff +

(θ) at Sf = 0.160 and 0.180 are then larger than those at
Sf = 0.150 and 0.190. Since the Sm component is a result of St0 and Sf , the magnitude
of the Sm component increases as the magnitude of the Sf component increases.

Since Sm(= Sm2,−1
) induces the subsequent second modulated frequency Sm3,−2

=
3St0 − 2Sf , its magnitude increases as the magnitude of the Sm component increases.
Consequently, Sm3,−2

also induces Sm4,−3
. If the frequency component of Sm3,−2

is expressed
in the form of equation (4.10), it is written as Am3,−2

cos (2πSm3,−2
t + ϕm3,−20

− φm3,−2
).

After rearrangement similar to the prior Sm term in equation (4.11), it can be rewritten
as Am3,−2

cos (3ϕ − 2θ + ϕm3,−20
− φm3,−2

), which is a function of 2θ for ϕ = φ0. When
the other modulated frequency components (Sm3,−2

, Sm4,−3
, . . ., etc.) are included in

equation (4.10), C ′Ldiff +
(θ) is not exactly equal to Am cos (2φ0 − θ + ϕm0

− φm) in this
case, however, but also includes all components of the modulated frequencies such as
Sm3,−2

. For C ′Ldiff +
(θ) = Am cos (2φ0 − θ + ϕm0

− φm), the shapes of the dashed diagram

are circular like those in figure 8. However, since C ′Ldiff +
(θ) includes all modulated

terms such as the 2θ term in Sm3,−2
, the shapes are slightly non-circular. In the cases

of Sf = 0.160 and Sf = 0.180, which are near the lock-on boundary, the shapes
are far from circles. This is because the magnitude of the Sm3,−2

component is large.
Near the lock-on boundary, since the magnitude of the Sf component is large, Sm
and Smj,k are also large. However, the intervals between Smj,k are relatively small.
This forms a distributed spectrum band at the lock-on boundary. The origin of the
broad frequencies appears to be a competition between natural and forcing modes.
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The interaction of two modes gives rise to slow oscillation and chaos. The pattern
competition might well be a fairly common sources of chaos (Ciliberto & Gollub
1984).

The maximum phases of CLave
(θ), CLmax+

(θ) and CLdiff +
(θ) are plotted against Sf in

figure 14, where all the diagrams of CL phases from figures 8 and 11 are summarized.
The phase of the maximum CLave

(θ) is φf from equation (4.10). It is shown that the
change of φf is on the order of π (−0.20π 6 φf 6 0.60π). This represents a phase
shift of the vortex formation process of nearly π. In the circle map in figure 6, the
change is exactly π. The phases of CLmax+

(θ) are not the same as those of CLave
(θ), as is

evident in figure 14, the phase of CLave
(θ) is out of phase with CLdiff +

(θ). The phase of
CLmax+

(θ) is located between CLdiff +
(θ) and CLave

(θ). Since the magnitude of CLave
(θ) is

larger than that of CLdiff +
(θ), the phase of CLmax+

(θ) is closer to CLave
(θ). Accordingly,

the influence of CLave
(θ) on CLmax+

(θ) is offset by CLdiff +
(θ). As Sf is far away from

the lock-on boundary, the phase difference and the magnitude of CLdiff +
(θ) decreases.

This leads to a weakened offset. However, since the magnitude of CLave
(θ) decreases

concurrently, CLmax+
(θ) is not changed significantly.

5. Conclusions
Detailed numerical analyses have been performed to delineate the quasi-periodicity

in forced wakes. A direct numerical simulation has been used to portray the unsteady
dynamics of wake flows behind a circular cylinder. The Reynolds number based
on the diameter is Re = 110 and excitation is given by the rotational oscillation
of circular cylinder. The natural shedding frequency is St∗0 = 0.171 and the forcing
frequency (Sf) varies in a range 0.150 6 Sf 6 0.190. The maximum rotation velocity
is 5.0% of the free-stream velocity (Ωmax = 0.05).

The response of the forced wake can be categorized into ‘lock-on’ and ‘non-lock-on’
states. In the lock-on state, the wake structure is periodic and does not change from
cycle to cycle. The shedding frequency (St0) coincides with the forcing frequency
(Sf). Outside the lock-on range, the flow structure is not phase-locked with respect
to the cylinder motion because perturbations produced by both Sf and St0 coexist
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in the near wake. St0 is not concentrated at St∗0, but gradually converges to St∗0.
The forced frequency bifurcates into two frequencies: one follows Sf and the other
(St0) asymptotically tends to St∗0. The additional frequency modulations are due to
nonlinear coupling where the interval between the modulated frequencies is equivalent
to the interval between St0 and Sf . The magnitude comparison of frequencies shows
that St0 > Sf > Smj,k . When Sf is close to the lock-on boundary, the interval between
Sf and St0 becomes very narrow and their magnitudes are almost the same. This forms
a distributed spectrum band at the lock-on boundary. As Sf approaches the boundary
of lock-on, the responses are characterized by a richness in frequency content and
relatively broadened spectral densities. The afore-stated frequency bifurcation and
the corresponding convergence of St0 to St∗0 can be verified by solving the Van der
Pol equation and the circle map. A new frequency selection formula is proposed as
functions of St∗0 and Sf . The agreement between the model prediction by the formula
and the wake results is shown to be satisfactory. Instantaneous streamlines of the
consecutive rotational oscillations are examined. Below the lower limit of lock-on, the
shedding period is shorter than the forcing period. When the flow state is examined
at each forcing cycle, one cycle of the vortex shedding is completed and the next cycle
elapses partially. This leads to a slight phase delay. Above the upper limit of lock-on,
the shedding period is longer than the forcing period. Since one cycle of the vortex
shedding is not completed during one forcing cycle, some additional time is required.
The phase is slightly preceded per cycle.

The diagrams of CL(t) cos θ and CL(t) sin θ are displayed to show the behaviour
of CL(t) with the forcing phase information (θ = 2πSft) in both periodic and quasi-
periodic states. For lock-on, the relation CL(θ + π) = −CL(θ) is satisfied and the
diagram has a circular shape. The centre of the circle is ( 1

2
CLmax

cosφf,
1
2
CLmax

sinφf).
The change of φf induces a switch in the phase of the initially formed vortex. The
quasi-periodic states are interpreted in terms of the torus concept and the CL(t)
diagram. In the quasi-periodic state, CL(t) can be written in terms of three dominant
frequencies, i.e. Sf , St0 and Sm. The sizes of Sf diagrams decrease as Sf moves away
from the lock-on boundary. This suggests that the direct response of Sf to CL weakens
outside the lock-on range. The changes of St0 diagrams are seen to be small, which
means that Sf has little effect on the strength of shedding vortex. The magnitude of
Sm increases as Sf approaches the lock-on boundary. Since the Sm component is made
up of St0 and Sf , the magnitude of the Sm component increases as the magnitude of
the Sf component increases.
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